Unsupervised Co-segmentation of 3D Shapes via Functional Maps

نویسندگان

  • Jun Yang
  • Zhenhua Tian
چکیده

We present an unsupervised method for co-segmentation of a set of 3D shapes from the same class with the aim of segmenting the input shapes into consistent semantic parts and establishing their correspondence across the set. Starting from meaningful pre-segmentation of all given shapes individually, we construct the correspondence between same candidate parts and obtain the labels via functional maps. And then, we use these labels to mark the input shapes and obtain results of co-segmentation. The core of our algorithm is to seek for an optimal correspondence between semantically similar parts through functional maps and mark such shape parts. Experimental results on the benchmark datasets show the efficiency of this method and comparable accuracy to the state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering

Many shape co-segmentation methods employ multiple descriptors to measure the similarities between parts of a set of shapes in a descriptor space. Different shape descriptors characterize a shape in different aspects. Simply concatenating them into a single vector might greatly degrade the performance of the co-analysis in the presence of irrelevant and redundant information. In this paper, we ...

متن کامل

Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization

This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the oversegmentation results as input, our approach clusters the primitive patches to generate initial guess. Then, it iteratively builds a statistical model to describe each cluster of parts from previous estimation, and employs the multi-label optimization to improve the co-segme...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Unsupervised Co-Segmentation of a Set of Shapes ia Descriptor-Space Spectral Clustering

We introduce an algorithm for unsupervised co-segmentation of a set of shapes so as to reveal the semantic shape parts and establish their correspondence across the set. The input set may exhibit significant shape variability where the shapes do not admit proper spatial alignment and the corresponding parts in any pair of shapes may be geometrically dissimilar. Our algorithm can handle such cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1609.08313  شماره 

صفحات  -

تاریخ انتشار 2016